Intel Core Ultra 7 265F processor 30 MB Smart Cache

SKU
AT8076806411
Login for pricing
Intel Core Ultra 7 processor 265F (30M Cache, up to 5.30 GHz) FCLGA18W, Tray
More Information
Processor socket LGA 1851 (Socket V1)
Box No
Processor cores 20
Processor family Intel Core Ultra 7
SKU AT8076806411
EAN 5054444665115
Manufacturer Intel
Availability In Stock
The latest Intel® Core™ Ultra processors (Series 2) enable you to use the most AI experiences across desktop, mobile and edge—making everything you do easier, faster, and better.
Processor
Processor generationIntel Core Ultra (Series 2)
Processor manufacturerIntel
Processor codenameArrow Lake
Processor cache30 MB
Processor ARK ID241064
Processor model265F
Processor threads20
Processor operating modes64-bit
Processor boost frequency5.3 GHz
Processor familyIntel Core Ultra 7
Processor cores20
BoxNo
Processor socketLGA 1851 (Socket V1)
Processor cache typeSmart Cache
Performance cores8
Efficient cores12
Performance-core boost frequency5.2 GHz
Performance-core base frequency2.4 GHz
Efficient-core boost frequency4.6 GHz
Efficient-core base frequency1.8 GHz
Processor base power65 W
Maximum turbo power182 W
Maximum number of DMI lanes8
AI software frameworks supported by CPUDirectML, OpenVINO, Windows ML, ONNX RT, WebNN
Neural processor unit (NPU)
Neural processor unit (NPU)Intel AI Boost
Sparsity supportYes
Windows Studio effects supportYes
AI software frameworks supported by NPUDirectML, OpenVINO, Windows ML, ONNX RT, WebNN
Total processor performance up to25 TOPs
NPU performance up to13 TOPs
Memory
Maximum internal memory supported by processor192 GB
Memory types supported by processorDDR5-SDRAM
Memory clock speeds supported by processor6400 MHz
Memory channelsDual-channel
Graphics
Discrete graphics cardNo
On-board graphics card modelNot available
On-board graphics cardNo
Discrete graphics card modelNot available
Technical details
Intel® Secure KeyYes
Thermal Monitoring TechnologiesYes
Intel® Turbo Boost Technology2.0
Intel Trusted Execution TechnologyYes
Intel® AES New Instructions (Intel® AES-NI)Yes
Idle StatesYes
Execute Disable BitYes
Enhanced Intel SpeedStep TechnologyYes
PCI Express slots version4.0, 5.0
Supported instruction setsAVX 2.0, SSE4.1, SSE4.2
Scalability1S
L2 cache36864 KB
Intel VT-x with Extended Page Tables (EPT)Yes
Embedded options availableNo
Intel Virtualization Technology for Directed I/O (VT-d)Yes
Intel 64Yes
StatusLaunched
Market segmentDesktop
Launch dateQ1'25
Intel Virtualization Technology (VT-x)Yes
Processor cache typeSmart Cache
Features
Maximum number of PCI Express lanes24
Processor ARK ID241064
Thermal Monitoring TechnologiesYes
Idle StatesYes
Execute Disable BitYes
PCI Express slots version4.0, 5.0
Supported instruction setsAVX 2.0, SSE4.1, SSE4.2
Scalability1S
Embedded options availableNo
Market segmentDesktop
Use conditionsPC/Client/Tablet
Direct Media Interface (DMI) Revision4.0
Processor special features
Intel Virtualization Technology for Directed I/O (VT-d)Yes
Intel 64Yes
Intel Turbo Boost Max Technology 3.0Yes
Intel® Speed Shift TechnologyYes
Intel® OS GuardYes
Intel® Secure KeyYes
Intel® Turbo Boost Technology2.0
Intel Trusted Execution TechnologyYes
Intel® AES New Instructions (Intel® AES-NI)Yes
Enhanced Intel SpeedStep TechnologyYes
Intel VT-x with Extended Page Tables (EPT)Yes
Intel Virtualization Technology (VT-x)Yes
Intel® Boot GuardYes
Intel® Volume Management Device (VMD)Yes
Intel® Deep Learning Boost (Intel® DL Boost) on CPUYes
Mode-based Execute Control (MBE)Yes
Intel® Turbo Boost Max Technology 3.0 frequency5.3 GHz
Intel® Thunderbolt 4Yes
Intel® Control-flow Enforcement Technology (CET)Yes
Intel® Thread DirectorYes
Intel® Standard Manageability (ISM)Yes
Operational conditions
Maximum operating temperature105 °C
Other features
Maximum internal memory192 GB
L2 cache36864 KB

You may also be interested in

Compare Products
Product Intel Core Ultra 7 265F processor 30 MB Smart Cache
Bestseller
Intel Core Ultra 7 265F processor 30 M... Login for pricing
Fujitsu Xeon E5-2407V2 4C/4T 2.4GHz processor 10 MB L3 Fujitsu Xeon E5-2407V2 4C/4T 2.4GHz pr... Login for pricing
AMD EPYC 7262 processor 3.2 GHz 128 MB L3
New
AMD EPYC 7262 processor 3.2 GHz 128 MB... Login for pricing
AMD EPYC 7402P processor 2.8 GHz 128 MB L3 AMD EPYC 7402P processor 2.8 GHz 128 M... Login for pricing
AMD EPYC 7282 processor 2.8 GHz 64 MB L3 AMD EPYC 7282 processor 2.8 GHz 64 MB L3 Login for pricing
AMD EPYC 7502P processor 2.5 GHz 128 MB L3
Hot Product
AMD EPYC 7502P processor 2.5 GHz 128 M... Login for pricing
SKU
AT8076806411
S26361-F3828-L240
100-000000041
100-000000048
100-000000078
100-000000045
Description
The latest Intel® Core™ Ultra processors (Series 2) enable you to use the most AI experiences across desktop, mobile and edge—making everything you do easier, faster, and better.
Information technology professionals rely on Fujitsu quality to ensure maximum productivity. As the power of applications, processors, memory adapters and storage devices increases, high-end computer users are seeking ways to optimize their system performance. Fujitsu provides leading solutions, adding new levels of performance, availability, flexibility, and management.
2nd Gen AMD EPYC are a new breed of server processors which sets a higher standard for data centers.
Groundbreaking design makes AMD EPYC #1 in performance across industry standard benchmarks, holding 80 world records to date. Performance you can count on to propel your modern data center workloads. ’Hardened at the Core’ protection helps defend against side-channel attacks and EPYC's secure encrypted virtualization features help keep your data safe. The processor’s agility helps you manage new deployments and changing workloads, with the system resources you need, simply and cost-effectively. AMD is the server processor company you can count on for innovation and leadership today and into the future.

Performance Leadership
Virtually everything runs better on AMD EPYC 7002 Series powered servers. Whether you run enterprise applications, virtualized and cloud computing environments, software-defined infrastructure, high-performance computing, or data analytic applications. EPYC processor-based systems are #1 on industry benchmarks, including those measuring integer, floating-point, virtualization, database, and HPC performance. AMD EPYC 7742 processor has set new world records that establish AMD as THE performance leader.

The secret is under the hood
AMD Infinity Architecture is a hybrid multi-die architecture that is reaching new heights with AMD EPYC 7002 Series processors. AMD Infinity Architecture now decouples two streams: eight dies for the processor cores, and one I/O die that supports security and communication outside the processor. With the agility to deliver the leading-edge process technology for CPU cores while letting I/O circuitry develop at its own rate, new capabilities can be brought to market faster with EPYC because its die design is not monolithic. This has allowed EPYC to race to leadership in the market and continue to innovate in the future.

Forged from the finest silicon
AMD is first to market an x86 processor based on 7nm technology. With double the core density and optimizations that improve instructions per cycle, the result is 4x the Floating-Point performance of 1st Gen AMD EPYC.

7nm process technology also brings energy efficiency. 2nd Gen AMD EPYC can provide the same performance at half the power consumption.

EPYC by the numbers
AMD EPYC has been engineered for data centers that rely on CPU performance. From oil and gas exploration, to in-memory databases, to big data analytics to production rendering to standard data center applications, highly parallel workloads have more cores to work with. AMD EPYC 7002 generation processors scale from 8 to 64 cores (16 to 128 threads per socket). No other x86 vendor today enables such a core density in the market.

Be top of the security chain
AMD EPYC is ‘Hardened at the Core’ with advanced security features. It is the first server CPU with an integrated and dedicated security processor providing the foundation for Secure Boot, Secure Memory Encryption (SME) and Secure Encrypted Virtualization (SEV). So you can worry less about data risk and focus more on running your business.

Enabling software boot without corruption
The AMD EPYC processor secure root of trust is designed to validate the initial BIOS software boot without corruption. In virtualized environments, you can cryptographically check that your entire software stack is booted without corruption on a cloud server or services you choose.

Restrict internal vulnerabilities
With encrypted memory, attacks on the integrity of main memory (such as cold-boot attacks) are inhibited because any data obtained is encrypted. High-performance encryption engines integrated into the memory channels help speed performance. All of this is accomplished without modifications to your application software.

Safeguarding virtual and cloud infrastructure
2nd Gen EPYC helps safeguard privacy and integrity by encrypting each virtual machine with one of up to 509 unique encryption keys known only to the processor. This aids in protecting confidentiality of your data even if a malicious virtual machine finds a way into your virtual machine’s memory, or a compromised hypervisor reaches into a guest virtual machine.

All-in feature set
AMD takes pride in having transparent relationships with its partners and customers. This means having an “all-in” feature set that isn’t contrived to extract higher prices from customers.

With AMD EPYC, you have the agility to choose the processor your application requires without worrying about whether an important feature or capability is included. Whatever the number of cores you choose, you’ll have the I/O, memory, and memory bandwidth to accomplish what you need.

First-to-market PCIe 4.0 readiness
AMD EPYC is the first and only current x86-architecture server processor supporting PCIe 4.06. PCIe 4.0 delivers double the I/O performance over PCIe 3.0. You can use 128 lanes of I/O to double the network bandwidth that ties together HPC clusters and satisfies voracious needs for east-west bandwidth. For other application needs and in virtualized environments, you can connect with higher speed to GPU accelerators, NVMe drives, and you can even use integrated disk controllers to access spinning disks without the typical bottleneck of a PCIe RAID controller.

X86 compatibility
You can have confidence in AMD EPYC 7002 generation processors because virtually all software will just work. We work with the open source community and major software vendors to help ensure your applications and enabling software will work exceptionally well with EPYC. The broad ecosystem of open tools and libraries are more reasons why top cloud providers such as AWS, Microsoft Azure, Oracle Cloud are providing services to customers based on AMD EPYC processors.

1-Socket EPYC server advantage
Traditional CPUs typically must scale up to a 2-socket server to overcome an imbalance of resources. With AMD EPYC, 1-socket servers satisfy most of your workload needs, helping you increase density and reduce capital, power, and cooling expenses.

With a 1-socket EPYC server, you can cut licensing costs up to 50% with ‘per-socket software’ such as VMware vSphere or vSAN.
2nd Gen AMD EPYC are a new breed of server processors which sets a higher standard for data centers.
Groundbreaking design makes AMD EPYC #1 in performance across industry standard benchmarks, holding 80 world records to date. Performance you can count on to propel your modern data center workloads. ’Hardened at the Core’ protection helps defend against side-channel attacks and EPYC's secure encrypted virtualization features help keep your data safe. The processor’s agility helps you manage new deployments and changing workloads, with the system resources you need, simply and cost-effectively. AMD is the server processor company you can count on for innovation and leadership today and into the future.

Performance Leadership
Virtually everything runs better on AMD EPYC 7002 Series powered servers. Whether you run enterprise applications, virtualized and cloud computing environments, software-defined infrastructure, high-performance computing, or data analytic applications. EPYC processor-based systems are #1 on industry benchmarks, including those measuring integer, floating-point, virtualization, database, and HPC performance. AMD EPYC 7742 processor has set new world records that establish AMD as THE performance leader.

The secret is under the hood
AMD Infinity Architecture is a hybrid multi-die architecture that is reaching new heights with AMD EPYC 7002 Series processors. AMD Infinity Architecture now decouples two streams: eight dies for the processor cores, and one I/O die that supports security and communication outside the processor. With the agility to deliver the leading-edge process technology for CPU cores while letting I/O circuitry develop at its own rate, new capabilities can be brought to market faster with EPYC because its die design is not monolithic. This has allowed EPYC to race to leadership in the market and continue to innovate in the future.

Forged from the finest silicon
AMD is first to market an x86 processor based on 7nm technology. With double the core density and optimizations that improve instructions per cycle, the result is 4x the Floating-Point performance of 1st Gen AMD EPYC.

7nm process technology also brings energy efficiency. 2nd Gen AMD EPYC can provide the same performance at half the power consumption.

EPYC by the numbers
AMD EPYC has been engineered for data centers that rely on CPU performance. From oil and gas exploration, to in-memory databases, to big data analytics to production rendering to standard data center applications, highly parallel workloads have more cores to work with. AMD EPYC 7002 generation processors scale from 8 to 64 cores (16 to 128 threads per socket). No other x86 vendor today enables such a core density in the market.

Be top of the security chain
AMD EPYC is ‘Hardened at the Core’ with advanced security features. It is the first server CPU with an integrated and dedicated security processor providing the foundation for Secure Boot, Secure Memory Encryption (SME) and Secure Encrypted Virtualization (SEV). So you can worry less about data risk and focus more on running your business.

Enabling software boot without corruption
The AMD EPYC processor secure root of trust is designed to validate the initial BIOS software boot without corruption. In virtualized environments, you can cryptographically check that your entire software stack is booted without corruption on a cloud server or services you choose.

Restrict internal vulnerabilities
With encrypted memory, attacks on the integrity of main memory (such as cold-boot attacks) are inhibited because any data obtained is encrypted. High-performance encryption engines integrated into the memory channels help speed performance. All of this is accomplished without modifications to your application software.

Safeguarding virtual and cloud infrastructure
2nd Gen EPYC helps safeguard privacy and integrity by encrypting each virtual machine with one of up to 509 unique encryption keys known only to the processor. This aids in protecting confidentiality of your data even if a malicious virtual machine finds a way into your virtual machine’s memory, or a compromised hypervisor reaches into a guest virtual machine.

All-in feature set
AMD takes pride in having transparent relationships with its partners and customers. This means having an “all-in” feature set that isn’t contrived to extract higher prices from customers.

With AMD EPYC, you have the agility to choose the processor your application requires without worrying about whether an important feature or capability is included. Whatever the number of cores you choose, you’ll have the I/O, memory, and memory bandwidth to accomplish what you need.

First-to-market PCIe 4.0 readiness
AMD EPYC is the first and only current x86-architecture server processor supporting PCIe 4.06. PCIe 4.0 delivers double the I/O performance over PCIe 3.0. You can use 128 lanes of I/O to double the network bandwidth that ties together HPC clusters and satisfies voracious needs for east-west bandwidth. For other application needs and in virtualized environments, you can connect with higher speed to GPU accelerators, NVMe drives, and you can even use integrated disk controllers to access spinning disks without the typical bottleneck of a PCIe RAID controller.

X86 compatibility
You can have confidence in AMD EPYC 7002 generation processors because virtually all software will just work. We work with the open source community and major software vendors to help ensure your applications and enabling software will work exceptionally well with EPYC. The broad ecosystem of open tools and libraries are more reasons why top cloud providers such as AWS, Microsoft Azure, Oracle Cloud are providing services to customers based on AMD EPYC processors.

1-Socket EPYC server advantage
Traditional CPUs typically must scale up to a 2-socket server to overcome an imbalance of resources. With AMD EPYC, 1-socket servers satisfy most of your workload needs, helping you increase density and reduce capital, power, and cooling expenses.

With a 1-socket EPYC server, you can cut licensing costs up to 50% with ‘per-socket software’ such as VMware vSphere or vSAN.
2nd Gen AMD EPYC are a new breed of server processors which sets a higher standard for data centers.
Groundbreaking design makes AMD EPYC #1 in performance across industry standard benchmarks, holding 80 world records to date. Performance you can count on to propel your modern data center workloads. ’Hardened at the Core’ protection helps defend against side-channel attacks and EPYC's secure encrypted virtualization features help keep your data safe. The processor’s agility helps you manage new deployments and changing workloads, with the system resources you need, simply and cost-effectively. AMD is the server processor company you can count on for innovation and leadership today and into the future.

Performance Leadership
Virtually everything runs better on AMD EPYC 7002 Series powered servers. Whether you run enterprise applications, virtualized and cloud computing environments, software-defined infrastructure, high-performance computing, or data analytic applications. EPYC processor-based systems are #1 on industry benchmarks, including those measuring integer, floating-point, virtualization, database, and HPC performance. AMD EPYC 7742 processor has set new world records that establish AMD as THE performance leader.

The secret is under the hood
AMD Infinity Architecture is a hybrid multi-die architecture that is reaching new heights with AMD EPYC 7002 Series processors. AMD Infinity Architecture now decouples two streams: eight dies for the processor cores, and one I/O die that supports security and communication outside the processor. With the agility to deliver the leading-edge process technology for CPU cores while letting I/O circuitry develop at its own rate, new capabilities can be brought to market faster with EPYC because its die design is not monolithic. This has allowed EPYC to race to leadership in the market and continue to innovate in the future.

Forged from the finest silicon
AMD is first to market an x86 processor based on 7nm technology. With double the core density and optimizations that improve instructions per cycle, the result is 4x the Floating-Point performance of 1st Gen AMD EPYC.

7nm process technology also brings energy efficiency. 2nd Gen AMD EPYC can provide the same performance at half the power consumption.

EPYC by the numbers
AMD EPYC has been engineered for data centers that rely on CPU performance. From oil and gas exploration, to in-memory databases, to big data analytics to production rendering to standard data center applications, highly parallel workloads have more cores to work with. AMD EPYC 7002 generation processors scale from 8 to 64 cores (16 to 128 threads per socket). No other x86 vendor today enables such a core density in the market.

Be top of the security chain
AMD EPYC is ‘Hardened at the Core’ with advanced security features. It is the first server CPU with an integrated and dedicated security processor providing the foundation for Secure Boot, Secure Memory Encryption (SME) and Secure Encrypted Virtualization (SEV). So you can worry less about data risk and focus more on running your business.

Enabling software boot without corruption
The AMD EPYC processor secure root of trust is designed to validate the initial BIOS software boot without corruption. In virtualized environments, you can cryptographically check that your entire software stack is booted without corruption on a cloud server or services you choose.

Restrict internal vulnerabilities
With encrypted memory, attacks on the integrity of main memory (such as cold-boot attacks) are inhibited because any data obtained is encrypted. High-performance encryption engines integrated into the memory channels help speed performance. All of this is accomplished without modifications to your application software.

Safeguarding virtual and cloud infrastructure
2nd Gen EPYC helps safeguard privacy and integrity by encrypting each virtual machine with one of up to 509 unique encryption keys known only to the processor. This aids in protecting confidentiality of your data even if a malicious virtual machine finds a way into your virtual machine’s memory, or a compromised hypervisor reaches into a guest virtual machine.

All-in feature set
AMD takes pride in having transparent relationships with its partners and customers. This means having an “all-in” feature set that isn’t contrived to extract higher prices from customers.

With AMD EPYC, you have the agility to choose the processor your application requires without worrying about whether an important feature or capability is included. Whatever the number of cores you choose, you’ll have the I/O, memory, and memory bandwidth to accomplish what you need.

First-to-market PCIe 4.0 readiness
AMD EPYC is the first and only current x86-architecture server processor supporting PCIe 4.06. PCIe 4.0 delivers double the I/O performance over PCIe 3.0. You can use 128 lanes of I/O to double the network bandwidth that ties together HPC clusters and satisfies voracious needs for east-west bandwidth. For other application needs and in virtualized environments, you can connect with higher speed to GPU accelerators, NVMe drives, and you can even use integrated disk controllers to access spinning disks without the typical bottleneck of a PCIe RAID controller.

X86 compatibility
You can have confidence in AMD EPYC 7002 generation processors because virtually all software will just work. We work with the open source community and major software vendors to help ensure your applications and enabling software will work exceptionally well with EPYC. The broad ecosystem of open tools and libraries are more reasons why top cloud providers such as AWS, Microsoft Azure, Oracle Cloud are providing services to customers based on AMD EPYC processors.

1-Socket EPYC server advantage
Traditional CPUs typically must scale up to a 2-socket server to overcome an imbalance of resources. With AMD EPYC, 1-socket servers satisfy most of your workload needs, helping you increase density and reduce capital, power, and cooling expenses.

With a 1-socket EPYC server, you can cut licensing costs up to 50% with ‘per-socket software’ such as VMware vSphere or vSAN.
2nd Gen AMD EPYC are a new breed of server processors which sets a higher standard for data centers.
Groundbreaking design makes AMD EPYC #1 in performance across industry standard benchmarks, holding 80 world records to date. Performance you can count on to propel your modern data center workloads. ’Hardened at the Core’ protection helps defend against side-channel attacks and EPYC's secure encrypted virtualization features help keep your data safe. The processor’s agility helps you manage new deployments and changing workloads, with the system resources you need, simply and cost-effectively. AMD is the server processor company you can count on for innovation and leadership today and into the future.

Performance Leadership
Virtually everything runs better on AMD EPYC 7002 Series powered servers. Whether you run enterprise applications, virtualized and cloud computing environments, software-defined infrastructure, high-performance computing, or data analytic applications. EPYC processor-based systems are #1 on industry benchmarks, including those measuring integer, floating-point, virtualization, database, and HPC performance. AMD EPYC 7742 processor has set new world records that establish AMD as THE performance leader.

The secret is under the hood
AMD Infinity Architecture is a hybrid multi-die architecture that is reaching new heights with AMD EPYC 7002 Series processors. AMD Infinity Architecture now decouples two streams: eight dies for the processor cores, and one I/O die that supports security and communication outside the processor. With the agility to deliver the leading-edge process technology for CPU cores while letting I/O circuitry develop at its own rate, new capabilities can be brought to market faster with EPYC because its die design is not monolithic. This has allowed EPYC to race to leadership in the market and continue to innovate in the future.

Forged from the finest silicon
AMD is first to market an x86 processor based on 7nm technology. With double the core density and optimizations that improve instructions per cycle, the result is 4x the Floating-Point performance of 1st Gen AMD EPYC.

7nm process technology also brings energy efficiency. 2nd Gen AMD EPYC can provide the same performance at half the power consumption.

EPYC by the numbers
AMD EPYC has been engineered for data centers that rely on CPU performance. From oil and gas exploration, to in-memory databases, to big data analytics to production rendering to standard data center applications, highly parallel workloads have more cores to work with. AMD EPYC 7002 generation processors scale from 8 to 64 cores (16 to 128 threads per socket). No other x86 vendor today enables such a core density in the market.

Be top of the security chain
AMD EPYC is ‘Hardened at the Core’ with advanced security features. It is the first server CPU with an integrated and dedicated security processor providing the foundation for Secure Boot, Secure Memory Encryption (SME) and Secure Encrypted Virtualization (SEV). So you can worry less about data risk and focus more on running your business.

Enabling software boot without corruption
The AMD EPYC processor secure root of trust is designed to validate the initial BIOS software boot without corruption. In virtualized environments, you can cryptographically check that your entire software stack is booted without corruption on a cloud server or services you choose.

Restrict internal vulnerabilities
With encrypted memory, attacks on the integrity of main memory (such as cold-boot attacks) are inhibited because any data obtained is encrypted. High-performance encryption engines integrated into the memory channels help speed performance. All of this is accomplished without modifications to your application software.

Safeguarding virtual and cloud infrastructure
2nd Gen EPYC helps safeguard privacy and integrity by encrypting each virtual machine with one of up to 509 unique encryption keys known only to the processor. This aids in protecting confidentiality of your data even if a malicious virtual machine finds a way into your virtual machine’s memory, or a compromised hypervisor reaches into a guest virtual machine.

All-in feature set
AMD takes pride in having transparent relationships with its partners and customers. This means having an “all-in” feature set that isn’t contrived to extract higher prices from customers.

With AMD EPYC, you have the agility to choose the processor your application requires without worrying about whether an important feature or capability is included. Whatever the number of cores you choose, you’ll have the I/O, memory, and memory bandwidth to accomplish what you need.

First-to-market PCIe 4.0 readiness
AMD EPYC is the first and only current x86-architecture server processor supporting PCIe 4.06. PCIe 4.0 delivers double the I/O performance over PCIe 3.0. You can use 128 lanes of I/O to double the network bandwidth that ties together HPC clusters and satisfies voracious needs for east-west bandwidth. For other application needs and in virtualized environments, you can connect with higher speed to GPU accelerators, NVMe drives, and you can even use integrated disk controllers to access spinning disks without the typical bottleneck of a PCIe RAID controller.

X86 compatibility
You can have confidence in AMD EPYC 7002 generation processors because virtually all software will just work. We work with the open source community and major software vendors to help ensure your applications and enabling software will work exceptionally well with EPYC. The broad ecosystem of open tools and libraries are more reasons why top cloud providers such as AWS, Microsoft Azure, Oracle Cloud are providing services to customers based on AMD EPYC processors.

1-Socket EPYC server advantage
Traditional CPUs typically must scale up to a 2-socket server to overcome an imbalance of resources. With AMD EPYC, 1-socket servers satisfy most of your workload needs, helping you increase density and reduce capital, power, and cooling expenses.

With a 1-socket EPYC server, you can cut licensing costs up to 50% with ‘per-socket software’ such as VMware vSphere or vSAN.
Short Description
Intel Core Ultra 7 processor 265F (30M Cache, up to 5.30 GHz) FCLGA18W, Tray
Intel Xeon E5-2407V2 processor, 4 cores, 2.4 GHz, 10MB Cache, 80 W
8 Cores, 16 Threads, 3.2GHz, 3.4GHz Boost, 128MB L3 Cache, Socket SP3, 155W
24 Cores, 48 Threads, 2.8GHz, 3.35GHz Boost, 128MB L3 Cache, Socket SP3, 180W
16 Cores, 32 Threads, 2.8GHz, 3.2GHz Boost, 64MB L3 Cache, Socket SP3, 120W
32 Cores, 64 Threads, 2.5GHz, 3.35GHz Boost, 128MB L3 Cache, Socket SP3, 180W
Manufacturer
Intel
Fujitsu
AMD
AMD
AMD
AMD